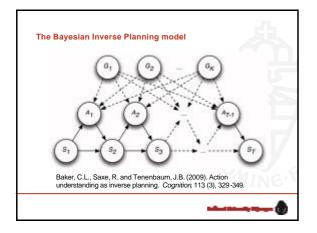
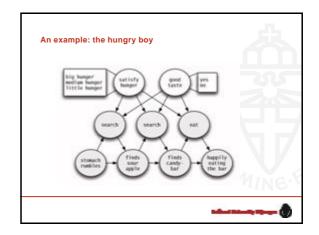
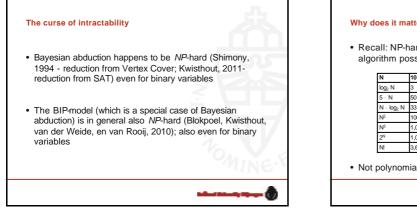
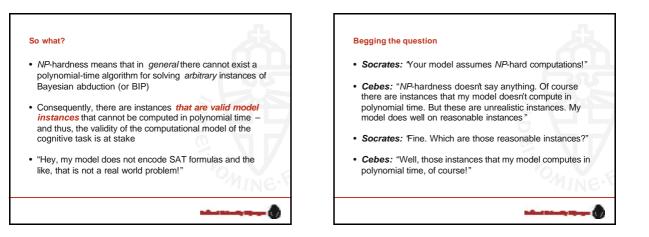
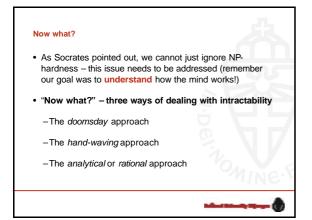

Outline "If I have seen fur shoulders of gian • Bayesian models of cognition Why computational complexity matters • "HELP! My model's intractable! What now?" • Analyzing sources of complexity • Less is better – constrain your models • Explaining and predicting behavior • Take home message: use your toolbox! • Joint work with Mark (University of New

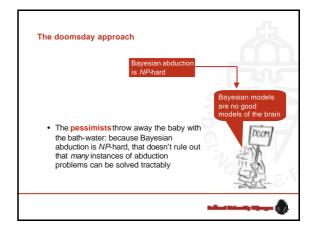


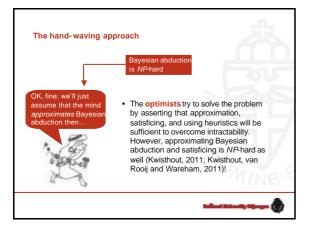


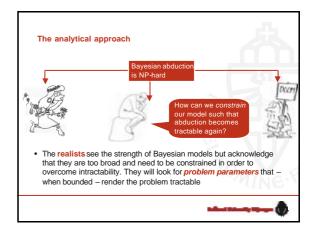


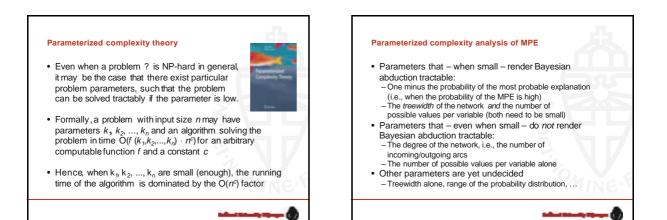


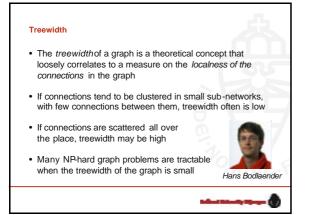


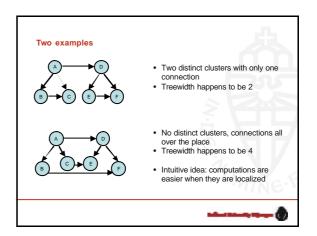

Why does it matter?

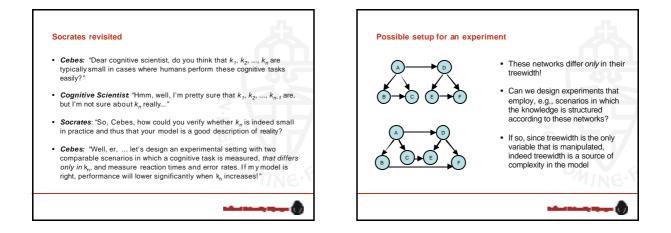

· Recall: NP-hard means: no polynomial worst-case algorithm possible unless P=NP

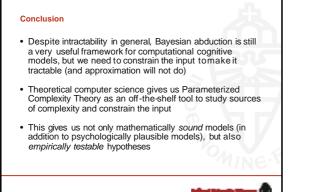

N	10	50	100	300	1000
log ₂ N	3	5	6	8	9
5 · N	50	250	500	1,500	5,000
$N\cdot\text{log}_2N$	33	282	665	2,469	9,966
N ²	100	250	10,000	90,000	1,000,000
N ³	1,000	125,000	1,000,000	$2.7 \cdot 10^{7}$	1.0 · 10 ⁹
2 ^N	1,024	1.1 · 10 ¹⁵	1.3 · 10 ³⁰	2.0 · 10 ⁹⁰	1.0 · 10 ³⁰¹
N!	3.628.800	3.0 · 10 ⁶⁴	9.3 · 10157	3.1 · 10 ⁶¹⁴	4.0 · 10 ²⁵⁶











Begging Answering the question

- · Socrates: "Your model assumes NP-hard computation!"
- Cebes: "NP-hardness doesn't say anything. Of course there are instances that my model doesn't compute in polynomial time. But these are unrealistic instances. My model does well on reasonable instances"
- · Socrates: 'Fine. Which are those reasonable instances?"
- **Cebes:** "Well, those instances in which parameters $k_1, k_2, ..., k_n$ are small!"

Socrates revisited Socrates: 'Which are those reasonable instances?' Cebes: "Well, those instances in which parameters k₁, k₂ ..., k_n are small" Socrates: "Ah, but are they small in practice?" Cebes: "I don't know, but let's ask a cognitive scientist to see whether she thinks that it is plausible that k₁, k₂, ..., k_n are typically small in cases where humans perform the cognitive task easily"

Want to learn more?			And the second second second
	co-organize the wor Scaling models of co to the real work	ognition	
	JCCM 2012	m C	
-	Capabilities Manipulary To example control of space registration of some many of a static of a space registration of the static order to the static of the static of the static order to the static of the static of the static order to the static of the	101 E12	@ ICCM 2012 conference, April 12th, Berlin
	1 March 1 March Statements of Article and Physics of Statements		April 12th, Berlin

	Mark Blokpoel, Johan Kwisthout, Theo van der Weide and Iris van Rooij (2010). How Action Understanding can be Rational, Bayesian and Tractable.
	CogSci 2010.
2.	Johan Kwisthout (2011). Most Probable Explanations in Bayesian Networks: Complexity and Tractability. International Journal of Approximate Reasoning, 52 (9), 1452 - 1469.
3.	Mark Blokpoel, Johan Kwisthout, Todd Wareham, Pim Haselager, Ivan Toni, and Iris van Rooij (2011). The computational costs of recipient design and intention recognition in communication CooSci 2011.
4.	Johan Kwisthout, Todd Wareham, and Iris van Rooij (2011). Bayesian Intractability is not an Aliment that Approximation can Cure. Cognitive Science, 35 (5), 779 -784.
5.	Johan Kwisthout and Iris van Rooij (2012). Bridging the Gap between Theory and Practice of Approximate Bayesian Inference. Accepted to the 11th International Conference on Cognitive Modeling.